Go Back   IceInSpace > General Astronomy > General Chat
Register FAQ Calendar Today's Posts Search

Reply
 
Thread Tools Rate Thread
  #1  
Old 16-07-2016, 09:02 PM
gary
Registered User

gary is offline
 
Join Date: Apr 2005
Location: Mt. Kuring-Gai
Posts: 5,999
Carbon nanotube mirror prototyped at Goddard

In a July 13 2016 article on the NASA web site, Lori Keesey reports
on work at Goddard on the world's first carbon-nanotube resin mirror.

Quote:
Originally Posted by Lori Keesey, NASA
Unlike most telescope mirrors made of glass or aluminum, this particular optic is made of carbon nanotubes embedded in an epoxy resin. Sub-micron-size, cylindrically shaped, carbon nanotubes exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. Owing to these unusual properties, the material is valuable to nanotechnology, electronics, optics, and other fields of materials science, and, as a consequence, are being used as additives in various structural materials.


“No one has been able to make a mirror using a carbon-nanotube resin,” said Peter Chen, a Goddard contractor and president of Lightweight Telescopes, Inc., a Columbia, Maryland-based company working with the team to create the CubeSat-compatible telescope.

Quote:
Originally Posted by Lori Keesey, NASA
The use of a carbon-nanotube optic in a CubeSat telescope offers a number of advantages, said Hewagama, who contacted Chen upon learning of a NASA Small Business Innovative Research program awarded to Chen’s company to further advance the mirror technology. In addition to being lightweight, highly stable, and easily reproducible, carbon-nanotube mirrors do not require polishing — a time-consuming and often times expensive process typically required to assure a smooth, perfectly shaped mirror, said Kolasinski, an engineer and science collaborator on the project.


To make a mirror, technicians simply pour the mixture of epoxy and carbon nanotubes into a mandrel or mold fashioned to meet a particular optical prescription. They then heat the mold to to cure and harden the epoxy. Once set, the mirror then is coated with a reflective material of aluminum and silicon dioxide.


“After making a specific mandrel or mold, many tens of identical low-mass, highly uniform replicas can be produced at low cost,” Chen said. “Complete telescope assemblies can be made this way, which is the team’s main interest. For the CubeSat program, this capability will enable many spacecraft to be equipped with identical optics and different detectors for a variety of experiments. They also can be flown in swarms and constellations.”
Quote:
Originally Posted by Lori Keesey, NASA
A CubeSat telescope is one possible application for the optics technology, Chen added.


He believes it also would work for larger telescopes, particularly those comprised of multiple mirror segments. Eighteen hexagonal-shape mirrors, for example, form the James Webb Space Telescope’s 21-foot primary mirror and each of the twin telescopes at the Keck Observatory in Mauna Kea, Hawaii, contain 36 segments to form a 32-foot mirror.


Many of the mirror segments in these telescopes are identical and can therefore be produced using a single mandrel. This approach avoids the need to grind and polish many individual segments to the same shape and focal length, thus potentially leading to significant savings in schedule and cost.


Moreover, carbon-nanotube mirrors can be made into ‘smart optics’. To maintain a single perfect focus in the Keck telescopes, for example, each mirror segment has several externally mounted actuators that deform the mirrors into the specific shapes required at different telescope orientations.


In the case of carbon-nanotube mirrors, the actuators can be formed into the optics at the time of fabrication. This is accomplished by applying electric fields to the resin mixture before cure, which leads to the formation of carbon-nanotube chains and networks. After curing, technicians then apply power to the mirror, thereby changing the shape of the optical surface. This concept has already been proven in the laboratory.


“This technology can potentially enable very large-area technically active optics in space,” Chen said. “Applications address everything from astronomy and Earth observing to deep-space communications.”

Article here -
http://www.nasa.gov/feature/goddard/...esat-telescope
Reply With Quote
  #2  
Old 17-07-2016, 06:15 PM
xelasnave's Avatar
xelasnave
Gravity does not Suck

xelasnave is offline
 
Join Date: Mar 2005
Location: Tabulam
Posts: 17,003
That is very exciting news.
Thanks for posting Gary.
Alex
Reply With Quote
Reply

Bookmarks


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT +10. The time is now 12:25 PM.

Powered by vBulletin Version 3.8.7 | Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Advertisement
Bintel
Advertisement