by
Guy Pirro

The sun is in the pits of the deepest solar minimum in nearly a century. Weeks and sometimes whole months go by without even a single tiny sunspot. The quiet has dragged out for more than two years, prompting some observers to wonder, are sunspots disappearing?
"Personally, I'm betting that sunspots are coming back," says researcher Matt Penn of the National Solar Observatory (NSO) in Tucson, Arizona. But, he allows, "there is some evidence that they won't."
Quiet suns come along every 11 years or so -- It's a natural part of the sunspot cycle of magnetic activity related to sunspots, solar flares, and interplanetary storms known as coronal mass ejections (CMEs). However, this year we have experienced an unusually long and deep solar minimum. Scientists from the National Solar Observatory (NSO) in Tucson, Arizona believe they have found the answer. The researchers have discovered that a solar jet stream deep inside the Sun is migrating slower than usual through the star's interior, giving rise to the current lack of sunspots and low solar activity.
Doctors Rachel Howe and Frank Hill, both of the NSO, used long-term observations from the NSO's Global Oscillation Network Group (GONG) facility to detect and track an east-to-west jet stream, known as the "torsional oscillation", at depths of ~1,000 to 7,000 km below the surface of the Sun. The Sun generates new jet streams near its poles every 11 years; the streams migrate slowly, over a period of 17 years, to the equator, and are associated with the production of sunspots once they reach a critical latitude of 22 degrees.
Howe and Hill found that the stream associated with the new solar cycle has moved sluggishly, taking three years to cover a 10 degree range in latitude compared to two years for the last solar cycle, but has now reached the critical latitude. The current solar minimum has become so long and deep, some scientists have speculated the Sun might enter a long period with no sunspot activity at all. The new result both shows that the Sun's internal magnetic dynamo continues to operate, and heralds the beginning of a new cycle of solar activity.
"It is exciting to see", said Dr. Hill, "that just as this sluggish stream reaches the usual active latitude of 22 degrees, a year late, we finally begin to see new groups of sunspots emerging at the new active latitude." Since the current minimum is now one year longer than usual, Howe and Hill conclude that the extended solar minimum phase may have resulted from the slower migration of the flow.
GONG and its sister instrument SOHO/MDI measure sound waves on the surface of the Sun. Scientists can then use the sound waves to probe structures deep in the interior of the star, in a process analogous to a sonogram in a medical office. "Using the global sound wave inversions, we have been able to reveal the intimate onnection between subtle changes in the Sun's interior and the sunspot cycle on its surface," said Hill.
"This is an important piece of the solar activity puzzle," said Dr. Dean Pesnell, of NASA's Goddard Space Flight Center. "It shows how flows inside the Sun are related to the creation of solar activity and how the timing of the solar cycle might be produced. None of the forecasting research groups predicted the current long extended delay in the new cycle. There is a lot more to learn in order to understand how the Sun creates magnetic fields."
The new science of helioseismology, enabled by instruments such as the ground-based GONG, the Michelson Doppler Imager aboard the SOHO spacecraft, and NASA's planned Solar Dynamics Observatory, has revolutionized understanding of the solar interior. "While the surface effects of the Sun's torsional oscillations have been observed for some time, understanding of the dynamo and the origin of sunspots depend on measurements of the solar interior that are only possible with helioseismic techniques", said Hill.
If sunspots do go away, it wouldn't be the first time. In the 17th century, the sun plunged into a 70-year period of spotlessness known as the Maunder Minimum that still baffles scientists. The sunspot drought began in 1645 and lasted until 1715; during that time, some of the best astronomers in history (e.g., Cassini) monitored the sun and failed to count more than a few dozen sunspots per year, compared to the usual thousands.
"Whether [the current downturn] is an omen of long-term sunspot decline, analogous to the Maunder Minimum, remains to be seen," Bill Livingston of the NSO and Penn caution. "Other indications of solar activity suggest that sunspots must return in earnest within the next year."
Whatever happens, notes NASA sunspot expert David Hathaway, "the sun is behaving in an interesting way and I believe we're about to learn something new."