View Single Post
  #2  
Old 23-03-2011, 12:00 PM
Robh's Avatar
Robh (Rob)
Registered User

Robh is offline
 
Join Date: Feb 2009
Location: Blue Mountains, Australia
Posts: 1,338
Hi Craig,

Thanks for that. Highly enlightening and revolutionary if true.

From some examination, here's a rundown on some of the Planck facts.
The Planck constant h was first used to give the energy of a photon.
E = hv where v is the frequency of the electromagnetic wave.

The Planck length = sqr(hG/c^3) where h is the reduced Planck's constant (h = Planck's constant /pi), G the gravitational constant and c the speed of light.
The Planck length is about 10^-20 of the diameter of a proton.

Some exerpts from wikipedia:
" The physical significance of the Planck length, if any, is not yet known."
"Because it is so tiny, there is no hope of directly probing this length scale in the foreseeable future."
It does go on to say that lengths of special significance in quantum gravity are likely to be small multiples of the Planck length.

The Planck energy is supposed to be the maximum possible energy that can fit into a region of the scale of a Planck length.

Planck units are designed to normalise the physical constants h, G and c to 1, where h is Planck's constant, G the gravitational constant and c the speed of light.
E = mc^2 simplifies to E = m or the Planck energy and mass are numerically equal.

So it appears that this normalisation is true regardless of the claims of doubly special relativity.

Doubly special relativity's unique claim is that c and Planck units of mass and energy are observer independent or invariant regardless of your reference frame. Fascinating.

Regards, Rob
Reply With Quote