Quote:
Originally Posted by CraigS
Yes. After I wrote my last response to Alex, I was thinking I didn't express where I was coming from very clearly.
I've been trying to chase a few things up since I wrote it ..
I'm not sure whether there'd be any effect on an absorption spectrum being taken of the escaping gases, (taken simultaneously), as this hypothesised, sustained 'dark mode' build up was occurring. (Ie: if it even was occurring at all).
If both were happening, presumably, the gases would be getting hotter and the ionisation levels would be greater, so I'd guess we might see more ionised compounds in the absorption bands (?)
As far as emission spectra are concerned, presumably this could only be visible if the energy levels were great enough to either move any ionised gases into the 'glow' or 'arc' regions (beyond 'dark' mode).
|
To add further to the what you have stated Craig.
Absorption occurs when the energy of the absorbing photons from the Sun, is not large enough to push electrons in the atoms of CO2 or water into higher energy states. Instead the energy impacts on vibration or bending of the molecular bonds.
For example the O-H and C=O bonds in water and CO2 respectively vibrate and have a specific resonance frequency. IR photons of the same frequency can be absorbed as a result.
The mechanism for emission in this circumstance is completely different. The charged particles in the plasma are producing a continuous emission spectrum.
Suppose we try to combine the two and claim the water and CO2 are effected by radiation emitted from the plasma. That doesn't work either. The higher energy photons absorbed will shift the reasonance frequency or destroy the bonds through ionization.
You will not observe the absorption spectrum given by NASA.
Regards
Steven