View Single Post
  #32  
Old 11-03-2008, 04:17 PM
Karls48 (Karl)
Registered User

Karls48 is offline
 
Join Date: Jan 2006
Location: Sydney
Posts: 753
Quote: In SR, the Lorentz transformations apply to time, space, and mass. By contrast, in LR, they apply only to clocks, meter sticks, and momentum. This is a subtle but important distinction. For example, increasing the temperature slows a pendulum clock and increases its length, yet this does not mean that something happens to time or space. Only the attempted measures of time and space using the pendulum clock, but not time and space themselves, are affected by temperature. In a similar way, in Lorentzian relativity, only the attempted measures of the dimensions time, space, and mass are affected by speed, but not the dimensions themselves. (In general relativity we find that measures of time by clocks are also affected by gravitational potential.) So in LR, equation set relates clocks and meter sticks in the preferred frame (X,Y,Z;T) to those in any relatively moving inertial frame (x,y,z;t). Time and space themselves are simply dimensions (concepts), and cannot be changed by motion, by potential, or by any material entity.
Because time is never affected, LR recognizes a “universal time” applicable to all frames, and a universal instant of “now”. In SR, all inertial frames are equivalent, so the Lorentz transformations apply reciprocally (both ways between two frames); whereas in LR, the local gravitational potential field constitutes a preferred frame, and the Lorentz transformations work just one way from the preferred frame to any inertial frame with a relative motion, but not reciprocally.


To me this theory of relativity is more logical then SR. As far I can find out it has been experimentally proved as much as GR has been. The GPS network uses preferred frame to synchronise satellites clocks, so there is some practical example of its validity.

Reply With Quote