Log in

View Full Version here: : Barbarossa


Joe Keller
01-06-2007, 07:13 AM
(About half my posts to the IceInSpace forum on this subject - all the posts in the "Astronomy Science" subforum - recently were deleted, not by me. Those posts may be found on Dr. Van Flandern's messageboard at metaresearch.org. - JK)


I've found two objects consistent with Freya, Barbarossa's smaller planet:

B2 (1986) RA 11 16 57.0 Decl -7 53 29.6
C3 (1987) RA 11 18 37.6 Decl -7 54 09.5

If the mass ratios Barbarossa:Frey:Freya are adjusted to 14.3:2.04:1, the center-of-mass path ABCG (four time points, 1954-2007) is straight, and constant-speed to a precision consistent with, assuming an average location on the orbit, eccentricity 0.015. In 1986, Freya appeared 71% as far from Barbarossa as was Frey, and in 1987, 86%.

As assigned, the points are inconsistent with an elliptical orbit for Frey. An alternative to chaotic orbits, is reassigning object "A" as Freya, not Frey. This only slightly affects the overall fit, and gives three Freys & three Freyas, so elliptical orbits can be drawn.

I've looked at 15'x15' regions from 1954, 1986, 1987 and 2007. The regions chosen were, basically, those consistent with a Barbarossa orbit following that mean Jupiter:Saturn resonance point nearest the CMB dipole. The above assignments as Barbarossa, Frey and Freya came from among 2400 possible assignments that I considered (a million different assignments were possible but I considered only the brightest dots as Barbarossa or Frey). There were two more dependent than independent variables to be fit, and these were fit to about one part in 40 (error / region width), i.e., 1 part in 40^2=1600 overall. (The main lack of perfect fit, is due to the uncertain contribution of the unknown 1954 & 2007 Freyas.)

The 2400 choices were far from stochastically independent. A well- or poorly-fitting choice of Barbarossa, Frey & Freya usually implies a good or poor fit by similar choices. In effect there were far fewer than 2400 independent choices.

The J:S resonance points are 72# apart, but the (+) CMB dipole lies on Barbarossa's orbit only 2# behind Barbarossa. Because a causal lag is expected, this gives another factor of 36 in significance.

Additional significance arises from the smoothing of the Pioneer acceleration by subtracting Barbarossa's presumed tidal influence, and from the balance between Barbarossa and planetary tidal (1/r^3) forces at the classic Kuiper Belt.

A week ago I sent another 30 emails to professional astronomers. Of the estimated 200 emails I've sent to professional astronomers about this (over several months' time) only one has responded. The professional astronomer who responded didn't know my main purpose; I'd only asked him a trivial question.

I've read that Neptune first was observed by two "assistants". These would be the sociological equivalents of graduate students today. So, my new strategy will be to email graduate students until one simply looks and finds out whether any of this is or is not there.

higginsdj
01-06-2007, 08:16 AM
Hi Joe,

Don't know what happened to your posts. (I didn't do it :D) They had been moved to a new thread call something like 'Another Barbarossa thread' the other day but I can't find that thread now.

Re your letter writing campaign, might I just add that telescope time is not allocated by Grad students nor by most Professional Astronomers. The time is pre-ordained by Time Allocation Committees with the occassional 'Directors' discression (ie director of the observatory) for special or noteworthy events. I don't think any of them would risk their jobs by stealing time from 'paying customers'.

You may get further by actually putting up a request for telescope time (all the observatories have the forms and instructions on the process on their web sites).

Cheers

David